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In gyrokinetic simulations, thousands of degrees of freedom are available to contribute to the

fluctuation spectrum. For wavevectors with a single linear instability, the unstable eigenmode

accounts for only one of these degrees of freedom. Little has been known about the role of the

remaining fluctuations in the turbulent dynamics. In this paper, these fluctuations are characterized

as modes in mode decompositions of gyrokinetic distribution functions from nonlinear simulations.

This analysis reveals the excitation of a hierarchy of damped modes at the same perpendicular

scales as the driving instabilities. Two effects of these subdominant modes are described: First,

these damped modes define a potent energy sink, creating a situation where energy drive and

energy dissipation peak at the same perpendicular scales. Second, damped modes with tearing

parity (even parity about the outboard midplane for Ajj fluctuations) are driven to significant

amplitudes and facilitate the development of magnetic stochasticity in electromagnetic gyrokinetic

simulations. VC 2011 American Institute of Physics. [doi:10.1063/1.3563536]

I. INTRODUCTION

Plasma microturbulence in fusion devices is driven by

instabilities.1 In gyrokinetic simulations,2–8 these instabilities

are represented by eigenmodes of the linear gyrokinetic op-

erator. Signatures of these eigenmodes are often clearly

observed in the turbulent saturated state;9–12 for example,

phase angles and frequency spectra exhibit significant broad-

ening but are typically centered at the values defined by the

driving instability. Nonetheless, fluctuations in the nonlinear

state deviate from the mode structure of the unstable eigen-

mode. The salient questions that we seek to answer in this

work are the following: (1) how can these deviations from

the linearly unstable eigenmodes be characterized, and (2)

what role do they play in the turbulence? These questions are

addressed by performing mode analyses of data from nonlin-

ear gyrokinetic simulations of ion temperature gradient

(ITG) driven turbulence as modeled by the GENE code.3

A typical linear initial-value gyrokinetic simulation will

solve for the perturbed gyrocenter distribution function,

gkx; ky
ðz; vjj; l; tÞ, of the most unstable eigenmode for a

selected wavevector ðkx; kyÞ, where x and y are the radial

and binormal directions, respectively, and kx and ky are the

associated Fourier wavenumbers (appropriate for a local flux

tube approximation as is used in this work), z is the direction

parallel to the magnetic field, tjj is the parallel velocity, l is

magnetic moment, and t is time. In this description, a particle

species index for the distribution function has been sup-

pressed consistent with the adiabatic electron assumption.

There is typically a range of instability for small k? (e.g.,

k?qi. 0:5 for ITG driven turbulence) where qi is the ion

gyroradius, outside of which all eigenmodes are stable.

Within the range of instability, the most unstable mode will

grow to dominate the solution, which will be of the form

gkx; ky
ðz; tjj; l; tÞ ¼ fkx; ky

ðz; tjj; lÞe�iðxkx ; kyþickx ;ky Þt. This defines

a fixed eigenmode structure f , which oscillates in time

according to its linear mode frequency, x, and grows expo-

nentially according to its growth rate, c. If one looks at the

same wavevector (kx;ky) in a nonlinear simulation, the fluc-

tuations are much more complex and, at times, bear little re-

semblance to the structure of the unstable eigenmode. In

order to characterize this complexity, we introduce as a post-

processing analysis tool a mode decomposition,

gkx; ky
ðz; tjj; l; tÞ ¼

X

n

f
ðnÞ
kx; ky
ðz; tjj; lÞhðnÞkx; ky

ðtÞ: (1)

The first mode in the decomposition, f
ð1Þ
kx; ky
ðz; tjj; lÞ, corre-

sponds to the unstable eigenmode structure and fluctuates in

time according to h
ð1Þ
kx; ky
ðtÞ—a balance of the effects of linear

drive and nonlinear stabilization. The remaining modes

f
ðnÞ
kx; ky
ðz; tjj; lÞ, ðn > 1Þ are also defined by fixed mode struc-

tures and fluctuate according to their time amplitudes,

h
ðnÞ
kx;ky
ðtÞ, ðn > 1Þ, in such a way that the nonlinear state is

exactly reproduced at each moment in time. Specific exam-

ples of this type of mode decomposition will be given below.

The n > 1 modes exist at the same perpendicular scales

(kx; ky) as an unstable mode (n ¼ 1) but have smaller ampli-

tude. As such, the n > 1 modes will be called subdominant

modes throughout this paper. Subdominant unstable modes

exist in some parameter regimes where multiple instabilities

coincide at the same scales. For example, ITG turbulence and

collisionless trapped electron mode (CTEM) turbulence can

coexist and simultaneously contribute to transport dynamics

as described in Ref. 13. In other common parameter regimes,

including that defined by the well-known cyclone base case

(CBC) parameters2 (which will be discussed in detail inb)Invited speaker.

a)Paper XI2 2, Bull. Am. Phys. Soc. 55, 371 (2010).
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Sec. III), there is at most one unstable eigenmode per wave-

vector (kx; ky). The remaining linear eigenmodes are stable. In

either case (one or multiple linear instabilities), the majority

of subdominant modes in a mode decomposition are damped

modes and dissipate energy from the fluctuations. This work

expands on the results presented in Ref. 14, and together

these studies represent the first quantitative analysis of

the effects of subdominant stable modes in gyrokinetic

simulations.

This type of mode analysis adds an extra dimension to

some of the more standard ways of interpreting the dynamics

of plasma microturbulence. For example, things such as

energy transfer or nonlinear coupling are often examined

only in the two-dimensional space of perpendicular wavevec-

tors (kx; ky). A mode decomposition allows one to consider

energy transfer in an extra dimension of subdominant modes.

Nonlinear interactions involve not only coupling between dif-

ferent wavevectors but also coupling between a variety of

modes [f
ðnÞ
kx; ky
ðz; tjj; lÞ] at different wavevectors. This is illus-

trated schematically in Fig. 1, where the upper plane repre-

sents the most unstable eigenmode at different wavevectors

and the lower planes represent subdominant stable modes

defined on the same space of wavevectors. We will show that

this extra dimension of energy transfer is crucial for under-

standing how plasma microturbulence saturates.

This work grows out of extensive studies of eigenmode

decompositions of local fluid models.15–19 Simple fluid mod-

els with only two or three eigenmodes permit detailed non-

linear analysis. These studies established that any damped

root of the linear dispersion relation is universally excited by

nonlinear mode coupling and grows exponentially from an

initial state in which amplitudes are infinitesimally small.17

It was also established that damped eigenmodes can saturate

the instability, absorbing energy at a rate that is comparable

to the energy input rate,15,16 that they modify transport

fluxes,15,18 and that they can modify cascade directions.19

From analysis of a diverse set of instability models, it has

been established that damped eigenmode excitation is intrin-

sic to many physical systems and parameter regimes.16 The

question of whether the damped eigenmode physics of

reduced fluid models extends to comprehensive models like

gyrokinetics is one of the motivations for the present work.

This paper will proceed as follows: In Sec. II, we will

discuss in what sense mode analyses of the gyrokinetic

model are a natural extension of the eigenmode decomposi-

tions in fluid models. We will also discuss two methods for

constructing a mode decomposition of the form of Eq. (1):

(1) projection of the gyrokinetic distribution function onto a

basis of linear eigenmodes, and (2) proper orthogonal

decomposition (POD) of the gyrokinetic distribution func-

tion. In the remaining sections, we will discuss two impor-

tant effects of subdominant modes. In Sec. III, we will

present a detailed mode analysis of the saturation of ITG tur-

bulence and demonstrate that the excitation of subdominant

modes causes energy dissipation to peak at the same scales

as the turbulent drive. This is in contrast with the common

implicit assumption that dissipation peaks at small perpen-

dicular scales. In Sec. IV, the effect of subdominant modes

on magnetic fluctuations will be discussed. Recent electro-

magnetic gyrokinetic studies have shown that magnetic fluc-

tuations cause magnetic stochasticity even at very low

values of plasma b (Ref. 20) (the ratio of magnetic pressure

to plasma pressure). The most unstable eigenmodes are not

resonant and cannot break magnetic flux surfaces. We show

that the dominant mechanism for the development of sto-

chasticity is subdominant modes with tearing parity that are

excited in the nonlinear state. A summary and conclusions

are provided in Sec. V.

II. MODE DECOMPOSITIONS

A mode decomposition can be constructed by postpro-

cessing data from a nonlinear gyrokinetic simulation. One

can output the distribution function for selected wavevectors

(kx; ky) of interest. This distribution function is then projected

onto a set of modes. In this section, we will discuss different

sets of basis modes and the methods for creating mode

decompositions.

Previous work has studied the effect of subdominant

damped eigenmode excitation in two and three field fluid

models of plasma microturbulence.15–19 These fluid models

are systems of coupled ordinary differential equations

(ODEs). For example, a two field model for trapped electron

mode turbulence (TEM) (Ref. 15) evolves two equations—

one each for the vorticity and the fluctuating electron den-

sity. The linear system can be solved analytically for the two

linear eigenmodes each of which is defined by linear combi-

nations of the two fields. One of the eigenmodes is unstable

for a range of wavenumbers, and the other eigenmode is sta-

ble for all wavenumbers. Fluctuation data can be projected

onto this basis of eigenmodes, and the contribution of each

eigenmode to physical processes such as transport can calcu-

lated. In general, the linear eigenmodes are not orthogonal,

FIG. 1. (Color online) Schematic representation of damped mode paradigm.

Energy transfer and nonlinear coupling occur between a series of modes at

the same perpendicular scales.
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but the limited number of modes makes this issue managea-

ble when interpreting results.

In contrast to fluid models, the gyrokinetic model is

defined by a system of integropartial differential equations.

However, upon numerical discretization, the gyrokinetic

model is also reduced to a system of ODEs albeit an

extremely large system. For each wavevector (kx; ky), the lin-

ear gyrokinetic operator is defined by a matrix, and each

point in phase space (z; tjj; l) is the mathematical analogue

of a field in a fluid model. The linear eigenvalues and eigen-

vectors are simply the eigenvalues and eigenvectors of this

matrix; the eigenvector=eigenvalue pair with the largest

growth rate (imaginary part of the eigenvalue) is identical to

the solution to the corresponding linear initial value problem.

This most unstable mode is one of N ¼ Nz � Ntjj � Nl total

eigenvectors, almost all of which are stable. If these eigenm-

odes are linearly independent, then they form a complete ba-

sis for the distribution function which is, numerically, a

vector with N ¼ Nz � Ntjj � Nl elements.

In light of the extensive work using linear eigenmode

decompositions in fluid models, it is a reasonable first step to

perform the analogous decomposition for gyrokinetic data.

The GENE code is well suited for this application as it is

equipped with powerful scalable eigenmode solvers that can

resolve the entire spectrum of linear eigenmodes for moderate

resolution.21 The linear gyrokinetic operator is non-Hermi-

tian21 and so, as in the fluid models, the resulting eigenvectors

are nonorthogonal. However, a mode decomposition can be

constructed by using the left eigenvectors of the linear opera-

tor as projection operators to extract the time amplitudes of

the right eigenvectors (the standard eigenvectors are the right

eigenvectors). It can be shown that the left eigenvectors

are orthogonal with regard to the right eigenvectors, i.e.,

f
ðlÞ
i � f

ðrÞ
j ¼ di; j where f

ðlÞ
i is the left eigenvector associated

with the ith eigenvalue and f
ðrÞ
j is the right eigenvector associ-

ated with the jth eigenvalue. A mode decomposition of the

form of Eq. (1) can be constructed for a selected wavevector

by operating with the left eigenvectors on the distribution

function from a nonlinear simulation; using the notation in

Eq. (1), the time amplitude of the nth right eigenvector is

determined by hðnÞðtÞ ¼ hf ðnÞ; leftðz; tjj; lÞ; gkx; ky
ðz; tjj; l; tÞi,

where h; i denotes a numerical sum over ðz; tjj; lÞ. However,

in contrast with fluid systems, the nonorthogonality of the

eigenmodes makes interpretation of the results unwieldy; the

seemingly largest amplitude modes are pairs of nearly parallel

vectors, which largely cancel in the sum.

In order to circumvent the problem of nonorthogonality,

one can orthogonalize the linear eigenmodes using the

Gram–Schmidt method. This requires an ordering of the

eigenvectors. It has been found that if one starts with the

unstable mode and orthogonalizes the eigenvectors in order

of increasing damping rate, then this produces an effective

orthogonal basis set. With this basis set, a mode decomposi-

tion can be constructed by operating with the basis vectors

on the distribution function from a nonlinear simulation:

hðnÞðtÞ ¼ hf ðnÞ ðz; tjj; lÞ; gkx; ky
ðz; tjj; l; tÞi. Application of

this decomposition shows that the unstable mode is the dom-

inant eigenmode in the nonlinear fluctuations. Other eigenm-

odes are also excited to significant amplitudes. The

amplitudes of the eigenmodes decrease as the mode damping

rates increase and also as the mode frequencies deviate from

the frequency of the unstable mode. This is shown in Fig. 2

where the time averaged squared eigenmode amplitudes are

plotted on the complex plane defined by the eigenmode fre-

quencies and linear growth rates. This projection was per-

formed for the 315 (of 8192) least damped modes for

wavevector ðkxqi ¼ 0:0; kyqi ¼ 0:3Þ (results are similar for

other important wavevectors). These 315 modes capture

83% of the fluctuation energy at this wavevector. These

results are for ITG turbulence defined by the CBC parame-

ters (shown in Table I) with s� a geometry (with a ¼ 0), a

local flux tube approximation,22 the adiabatic electron

approximation, and (32� 32� 8) grid points in the

(z; tjj; l) coordinates, respectively.

POD can also be used to construct mode decomposi-

tions. POD has been used extensively in the hydrodynamic

turbulence community23 and, more recently, in plasma turbu-

lence applications.24,25 POD uses the singular value decom-

position (SVD) (Ref. 26) of a matrix to analyze fluctuation

data. The SVD of a matrix is A ¼ URV
�T where U is a uni-

tary matrix whose columns are called left singular vectors, V
is a unitary matrix whose columns are called right singular

vectors, and R is a diagonal matrix whose elements (singular

values, sn) indicate the relative importance of the orthonor-

mal vectors making up U and V. In order to construct a

mode decomposition, each column of the input matrix A

FIG. 2. (Color) Plot of the squared mode amplitudes of the 315 (of 8192)

least damped eigenmodes, orthogonalized in order of decreasing growth

rate, for Fourier mode kyqi ¼ 0:3; kxqi ¼ 0:0 plotted in the plane defined by

the mode growth rates and frequencies. The mode amplitudes decrease as

damping rates increase and as the mode frequencies deviate from the unsta-

ble mode.

TABLE I. Cyclone base case parameters. The parameters are safety factor

q, magnetic shear ŝ, inverse aspect ratio r=R, ion (electron) density niðeÞ, ion

(electron) temperature TiðeÞ, temperature gradient scale length R=LT , density

gradient scale length R=Ln, plasma b, and collision frequency m. Variations

are used for different simulations in this paper. Finite collisionality m is used

in Sec. II and finite b is used in Sec. III.

q ŝ 2¼ r=R ni=ne ¼ Ti=Te R=LT R=Ln b m

1.4 0.8 0.18 1.0 6.9 2.2 0.0 0.0
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consists of a time slice, gkx; ky
ðz; tjj; l; tiÞ at time ti, of the

nonlinearly evolved gyrokinetic distribution function for a

selected wavevector. The nonspectral coordinates ðz; tjj; lÞ
are “vectorized”—unravelled to one dimension, e.g., as the

data would be stored in computer memory. These distribu-

tion functions are preweighted in such a way that the scalar

products in the SVD routine become equivalent to integrals

over the coordinates. Since the nonspectral coordinates vary

along the columns of the input matrix, the left singular vec-

tors become the mode structures ½f ðnÞðz; tjj; lÞ in Eq. (1)].

Since the time coordinate varies along the rows of the input

matrix, the right singular vectors become time traces of the

amplitudes of the corresponding mode structures [these mul-

tiplied by the singular values correspond to hðnÞðtÞ in Eq.

(1)]. By construction, the left singular vectors are orthonor-

mal under an integral over the coordinates,
Ð

f ðiÞ
�
f ðjÞ

JðzÞdzdtjjdl ¼ di; j, where JðzÞ is a Jacobian, and the right

singular vectors are orthogonal under a time integral,Ð
hðiÞ

�
hðjÞdt ¼ sisjdi; j.

Properties of the SVD ensure that the POD mode

decomposition has the additional benefit of being “optimal.”

This means that the POD decomposition captures more of

the original data set (as measured by a Frobenius norm) in a

truncated mode decomposition (i.e., a mode decomposition

keeping only the first r < N terms in the sum) than any other

possible decomposition. This property, along with the ortho-

gonality of the right and left singular vectors makes the POD

decomposition the most useful of the decompositions dis-

cussed in this section. This paper will focus on results using

POD mode decompositions. The remainder of this section

will discuss general observations of POD mode decomposi-

tions of ITG turbulence data. The next section will apply

these mode decompositions to understanding saturation of

ITG turbulence.

We will examine in detail the POD decomposition for

the wavevector of peak transport, kxqi ¼ 0:0; kyqi ¼ 0:2 for

a simulation of ITG turbulence using CBC parameters as

listed in Table I. The parallel boundary condition for flux

tube geometry connects the parallel mode structure for a cen-

tral kx wavevector with higher kx wavevectors at the same

ky.22 Three such connections are included in this analysis

(kxqi ¼ 0:0 and 6kxqi ¼ 1:0) in order to extend the parallel

mode structure beyond one poloidal circuit. It is observed

that the n ¼ 1 POD mode is very similar to that of the unsta-

ble eigenmode. The parallel mode structure of the electro-

static potential for this POD mode is shown in Fig. 3(A). A

scalar product jhf ð1Þ; f unstableij between the two provides a

measure of similarity. This scalar product is typically above

0.9 (out of 1.0 for identical vectors) for wavevectors with

strongly unstable eigenmodes. This is simply a verification

of the expectation that the unstable eigenmode is the domi-

nant structure in the nonlinear state. In this paper, the n ¼ 1

POD mode and the unstable linear eignemode will often be

conceptually equated, though it should be remembered that

they are not exactly equivalent. In contrast to the unstable

mode, the n ¼ 2 POD mode exhibits odd parity about the

outboard midplane, as can be seen in Fig. 3(B). This is the

electrostatic version of electromagnetic modes with tearing

parity that will be discussed in detail in Sec. IV. This mode

is also similar to a linear eigenmode—in this case, the least

damped eigenmode with negative growth rate. The mode

structures of additional POD modes (n ¼ 9 and n ¼ 50) are

shown in Figs. 3(C) and 3(D). It is seen that finer scale struc-

ture develops as n increases. The tjj dependence of the mode

structures is shown in the right column of Fig. 3. The tjj
structures have many features in common with the mode

structures in z; they share the same parity (even or odd about

tjj ¼ 0) as the corresponding parallel structure and also de-

velop corresponding fine scale features as n increases. For

the parameters studied here, very little structure develops in

FIG. 3. Plot of the mode structures of a POD decomposition of the wave-

vector kxqi ¼ 0:0; kyqi ¼ 0:2. The parallel mode structures of the electro-

static potential are shown in the left column (A)–(D) for selected POD mode

numbers. The structures in tjj are shown in the right column (E)–(H). Fine

scale structure develops as n increases. The singular values that indicate the

amplitude of each mode are shown in (I).
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the l coordinate. The spectrum of singular values shown in

Fig. 3(I) indicates the relative amplitude of each of these

modes in the nonlinear state. The spectrum decreases rapidly

up to n � 100 followed by a region of weak exponential

decay.

In order to illustrate how these modes reconstitute the

nonlinear state, Fig. 4 shows the parallel mode structure for

the electrostatic potential at a point in time when the mode

structure deviates strongly from that of the unstable mode. In

Fig. 4, the full decomposition is compared with a series of

truncated decompositions—decompositions keeping all

terms up to a number r. Figure 4(A) shows the n ¼ 1 trunca-

tion, which deviates strongly from the nonlinear structure.

The n � 2 truncation [shown in Fig. 4(B)] captures much of

the trend in the nonlinear structure but significant discrep-

ancy remains. The n � 100 truncation reproduces the full

structure very closely, as can be seen in Fig. 4(D).

The time amplitudes hðnÞðtÞ from the POD decomposi-

tion exhibit broadband frequency spectra, which correspond

closely (for low n) to the frequency spectra that would be

calculated for a field such as the electrostatic potential. The

time amplitudes for the n ¼ 1 and n ¼ 100 POD modes are

shown in Figs. 5(A) and 5(B) along with the frequency spec-

tra for all the normalized modes in Fig. 5(C) where it is seen

that the modes are associated with increasingly fast time

scales as n increases.

III. ROLE OF SUBDOMINANT MODES IN SATURATION
OF ITG TURBULENCE

A familiar turbulence paradigm, which describes the sat-

uration of homogeneous high Reynolds number hydrody-

namic turbulence, is as follows:27 Fluctuation energy is

injected into the turbulence at large scales. This energy cas-

cades through a broad inertial range of scales where conserva-

tive nonlinear energy transfer dominates—i.e., very little

energy is injected or dissipated from the fluctuations. At very

small scales, viscous effects dominate and the energy is dissi-

pated. The processes that inject energy occur at distinct scales

from the processes that dissipate the energy. The turbulence

saturates when the rate of energy injection at large scales is

balanced by the rate of energy dissipation at small scales.

Many aspects of this saturation paradigm have features in

common with theories describing saturation in plasma micro-

turbulence. In two dimensional, small scale (k?qi � 1),

homogeneous plasma turbulence, saturation occurs via a dual

cascade in perpendicular spatial scales and velocity space (l
in this case).28,29 Another example is the concept of turbulent

FIG. 4. (Color online) Demonstration of

a POD decomposition reproducing the

nonlinear state at a moment in time

when the nonlinear mode structure devi-

ates strongly from the unstable mode

structure. The full decomposition (thick

black line) is compared against truncated

decompositions [thin gray line (red

online)] of rank 1, 2, 50, and 100 for

(A)–(D), respectively.
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suppression due to shearing by zonal flows whereby energy is

transferred to small radial scales.30 In addition to whatever

dissipation may occur at small scales, here we will show that

toroidal ITG driven turbulence saturates largely due to dissi-

pation on subdominant modes at large perpendicular scales—

the same scale range as the driving instabilities.14 Evidence

for this assertion follows.

In order to study saturation, one must first define an

energylike quantity. The quantity of interest in gyrokinetics

is E ¼
Ð

dzdtjjdlB0p
n0T0

F0
jgj2 þ

Ð
dzDðk?Þj/j2,11,31 where B0

is the background magnetic field, / is the electrostatic poten-

tial, n0 and T0 are the background density and temperature,

and D is a function of z and the perpendicular wavenumbers.

This energy quantity has several useful properties; it pro-

vides a measure for the intensity of the turbulence, it is nonli-

nearly conserved, and its sources and sinks (heat flux and

collisional and numerical dissipation) are associated with in-

tuitive physical (and numerical) quantities. Although this

quantity is derived from an entropy f log f , here we will call

it energy to emphasize the similarity with juj2 energy in the

Navier–Stokes equation and other quadratic energy quanti-

ties in plasma fluid models, which play a similar role in tur-

bulence. The energy evolves according to

@Ek

@t

���
N:C:
¼ Qk þ Ck; (2)

where Q ¼
Ð

dzdtjjdlpn0T0B0ðt2
jj þ lB0ÞxTgiky

�/ (the over-

bar denotes a gyroaverage) is a term proportional to the heat

flux and represents the turbulent drive, C represents colli-

sional dissipation (and in a simulation, whatever artificial

dissipation is used). The subscript N.C. denotes that this

equation describes only nonconservative processes, i.e.,

processes that inject or dissipate net energy from the system.

The data set used in this section is produced by the GENE

code. It uses the CBC parameters as defined in Table I with

the exception that here we use a linearized Landau–Boltz-

mann collision operator (which models ion–ion collisions

when the adiabtic electron assumption is used), rather than

exclusively artificial dissipation, in order to model physical

dissipation processes. The collision frequency is mðR=vTÞ
¼ 3:0� 10�3, which is much less than the dynamic time

scales of the system. In this simulation, Ck is dominated by

collisional dissipation but also includes contributions from

fourth order hyperdiffusive dissipation in the z and tjj coordi-

nates. The simulation employs s� a geometry with a ¼ 0.

The local flux tube approximation is used, and a Fourier rep-

resentation is employed for the radial and binormal direc-

tions. The flux tube boundary condition in the parallel

direction couples certain kx Fourier modes,22 and a zero

boundary condition is applied when all possible connections

have been exhausted. For the z and tjj derivatives originating

from the parallel advection and trapping terms, an Arakawa

differencing scheme32 has recently been implemented in

GENE. This greatly improves the accuracy of the calculation

of the terms in the energy equation. The collision operator is

discretized using a finite volume scheme, and the corre-

sponding velocity space flux is set to zero at the l and tjj
boundaries. No external E� B shear is applied. The perpen-

dicular box size is ðLx; LyÞ ¼ ð126qi; 126qiÞ, and the number

of grid points is 48� 48� 8 for the ðz; tjj; lÞ coordinates,

respectively. The perpendicular spatial resolution consists of

128 grid points in the x direction giving kx;maxqi ¼ 3:12, and

64 ky Fourier modes for ky;maxqi ¼ 3:15. The electrostatic

ion heat diffusivity is shown in Fig. 6. All time averages are

taken over the nonlinearly saturated state: tvT=R 	 ½50; 220
.
In this section, POD decompositions are applied to only a

FIG. 5. (Color online) Plot of the POD time traces for n ¼ 1 (A) and n ¼ 2 (B). (C) shows the frequency spectrum for each mode demonstrating that the time

scale increases with n.
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single kx value, omitting higher kx connections, in order to

isolate dissipation at small scales from dissipation at large

scales.

The scale dependence of the energy terms is shown in

Fig. 7 where the drive Q and dissipation C are plotted as a

function of kx summed over ky (A) and a function of ky

summed over kx (B). The scales of peak drive and dissipation

overlap, and there is no inertial range of scales. Contrast this

with the analogous picture for high Reynolds number hydro-

dynamic turbulence where the drive is localized at large

scales, the dissipation is localized at small scales, and there is

a broad inertial range with no energy injection or dissipation.

The POD decomposition facilitates the calculation of

the contribution of individual structures to the terms in the

energy equation at each scale (kx; ky). The energy quantities,

Q and C, are quadratic in the distribution function g; so,

some sort of orthogonality is necessary in order to isolate the

impact of each mode. Recall that, as discussed in Sec. II, the

POD mode structures (f ðnÞ) are orthogonal under an integral

over the nonspectral coordinates (z; tjj; l), but this does not

guarantee orthogonality under other operations like Q and C.

Fortunately, the right singular vectors, hðnÞðtÞ, are also or-

thogonal. Thus, taking a time integral isolates distinct contri-

butions from each mode to the total energy quantities, e.g.,Ð
CkðgtotalÞdt ¼

P
nCkðf ðnÞÞ

Ð
jhðnÞðtÞj2dt.

In order to get a picture of the k-dependence of the ener-

getics, mode decompositions are explored over a scan of

wavevectors centered about the peak of the nonlinear spec-

trum: kxqi ¼ 0:0; kyqi ¼ 0:2. The unstable mode achieves its

largest amplitude (in an absolute sense as well as in relation to

subdominant modes) at this peak wavenumber. As a result,

this scan can be thought of as defining a lower bound on the

magnitude of the effects of subdominant modes in relation to

the effect of the unstable mode. The scan consists of a series

of increasing kx values at kyqi ¼ 0:2 and a scan of ky values at

kxqi ¼ 0:0. The mode by mode dissipation, Ckðf ðnÞÞÐ
jhðnÞðtÞj2dt, is shown for selected elements of the ky scan in

Fig. 8 (top) and for selected elements of the kx scan in Fig. 8

(bottom). This quantity drops off steeply at low n and

decreases exponentially at high n. A large number of modes

contribute a non-negligible fraction to the dissipation. The

decreasing dependence on n is due to the drop-off in the mode

amplitudes [singular value spectrum, e.g., as seen in Fig. 3(I)].

The dissipation rate Ckðf ðnÞÞ for each normalized mode (i.e.,

using the mode structures without amplitude information) is

smallest for n ¼ 1 and strongly increases with n. This is

because of a transition from smooth, large scale velocity space

structure at low n to increasingly fine scale velocity space

structure as n increases (as demonstrated in Fig. 3). Only

when amplitude information is included in the calculation of

Ck is the decreasing n-dependence shown in Fig. 8 recovered.

In order to demonstrate that the k-dependence of the dis-

sipation (peaking at large perpendicular scales as shown in

Fig. 7) is due to the excitation of subdominant modes, one

must separate the dissipation associated with the n ¼ 1 mode

from the dissipation associated with subdominant (n > 1)

modes. This is shown in Fig. 9 for the wavevector scan

described above. The red squares indicate the total dissipa-

tion at certain wavevectors. The green plus signs indicate the

dissipation associated with the n ¼ 1 mode, and the blue dia-

monds indicate the dissipation due to subdominant modes

(the sum of all n > 1 in Fig. 9). The dissipation due to the

n ¼ 1 mode is comparable to the n > 1 dissipation only near

the peak in the spectrum where the n ¼ 1 mode achieves its

largest relative amplitude. In other regions, the n > 1 modes

dominate the dissipation and, in aggregate, define the domi-

nant energy sink. Note that the n ¼ 1 mode has the smallest

dissipation rate ½Ckðf ð1ÞÞ
; its net dissipation, Ckðf ð1ÞÞÐ
jhð1ÞðtÞj2dt, is significant only because of its large

FIG. 6. Electrostatic ion heat diffusivity for the simulation analyzed in Sec. III.

FIG. 7. (Color online) Plot of the energy

drive Qk and dissipation Ck averaged

over z and time, as a function of kx

(summed over ky) (A) and ky (summed

over kx) (B). The drive and dissipation

peak at the same scales.
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amplitude. Also, the significant dissipation associated with

the n ¼ 1 mode is not inconsistent with its role as the driving

instability; the energy drive, Qkðf ð1ÞÞ
Ð
jhð1ÞðtÞj2dt, due to this

mode far outweighs its dissipation.

In contrast with the above results for the dissipation Ck,

performing the same analysis on the energy drive Qk reveals

that it is dominated by the n ¼ 1 mode. The contribution to

the energy drive of n > 1 modes is positive and typically

less than 5% of that of the n ¼ 1 mode for the most impor-

tant wavevectors. Beyond n � 3, the drive rates, Qkðf ðnÞÞ,
are randomly distributed about zero—i.e., some modes drive

an inward ion heat flux, other modes drive an outward ion

heat flux, and in sum, these modes produce very little net

transport. It is expected that in situations like this, certain

quasilinear estimates could be meaningful in spite of the

active participation of subdominant modes in the fluctuation

spectrum. This result is very different from the behavior of

damped modes in fluid models, where damped modes usu-

ally contribute significant inward fluxes and strongly reduce

transport levels from quasilinear expectations.15–17

Thus far in this section we have considered separately

the physical processes that are responsible for the energy

drive (Qk) and the energy dissipation (Ck). Another approach

is to consider the net contribution to the energy balance,

ðQkðf ðnÞÞ þ Ckðf ðnÞÞÞ
Ð
jhðnÞðtÞj2dt, for each mode in a mode

decomposition. It is observed that a small number of subdo-

minant modes have a net positive contribution to the energy

balance even for CBC parameters where there is one linearly

unstable mode per wavevector. For example, the n ¼ 2 POD

mode has a value of ðQkðf ð2ÞÞ þ Ckðf ð2ÞÞÞ
Ð
jhð2ÞðtÞj2dt that is

slightly positive (�2:5% of the value for the n ¼ 1 mode for

kxqi ¼ 0:0; kyqi ¼ 0:2) even though the most similar linear

eigenmodes (modes with similar parallel mode structure) are

weakly damped. In Figs. 10(A) and 10(C) ðQkðf ðnÞÞ
þCkðf ðnÞÞÞ

Ð
jhðnÞðtÞj2dt is plotted over the wavevector

scan for the unstable mode n ¼ 1 (blue triangles) and for the

sum of all modes with a net positive value of ðQkðf ðnÞÞ
þCkðf ðnÞÞÞ

Ð
jhðnÞðtÞj2dt (red asterisks). In Figs. 10(B) and

10(D) this is plotted for all subdominant modes (n > 1) (blue

triangles) and for all subdominant modes with net negative

values of ðQkðf ðnÞÞ þ Ckðf ðnÞÞÞ
Ð
jhðnÞðtÞj2dt (red asterisks).

In Fig. 10(D), the blue triangle at kxqi ¼ 0:1 is slightly posi-

tive, indicating that, for this wavevector, the net effect of

subdominant modes is a slight positive contribution to the

energy balance (these effects are more pronounced when

examined using a linear eigenmode decomposition). This is

a variant of subcritical instability, which normally describes

instability to finite amplitude perturbations in a system that

is stable to perturbations of infinitesimal amplitude.33,34

Here the system is unstable or supercritical. At kxqi ¼ 0:1;
kyqi ¼ 0:2, it is more unstable at finite amplitude (due to

subdominant mode excitation) than it is at infinitesimal

amplitude, where there is only the linear instability. This

increases the growth rate above the linear value. At other

wavenumbers, the system is less unstable at finite amplitude,

describing the relatively much larger role of subdominant

modes in saturating the linear instability. Both effects were

observed and described for a simpler fluid model of trapped

electron mode turbulence.15

IV. ROLE OF SUBDOMINANT MODES IN MAGNETIC
FLUCTUATIONS

In recent years, gyrokinetic studies have examined elec-

tromagnetic (finite b—the ratio of plasma pressure to mag-

netic pressure) effects in microturbulence.35–41 The ITG

studies described in Refs. 38 and 39 consider an extension of

CBC parameters consisting of a scan of b values increasing

from the electrostatic limit. It was found that the ion heat

transport decreases over this scan. Electron heat transport

can be divided into an electrostatic part (due to E� B advec-

tion) and an electromagnetic part (due to radial streaming

along the perturbed magnetic field). It was found that the

FIG. 8. (Color online) Plot of the mode by mode dissipation Ckðf ðnÞÞÐ
hðnÞðtÞ2dt for a range of ky values at kxqi ¼ 0 (top) and a range of kx values

at kyqi ¼ 0:2 (bottom). A large number of modes contribute to the dissipation.

FIG. 9. (Color online) Plot of the dissipation Ckðf ðnÞÞ
Ð

hðnÞðtÞ2dt for all

modes (red squares), the n ¼ 1 mode (green plus signs), and all n > 1 modes

(blue diamonds), for a range of ky values at kxqi ¼ 0 (top) and a range of kx

values at kyqi ¼ 0:2 (bottom). The dissipation due to subdominant (n > 1)

modes is the dominant contribution.
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electron heat transport was somewhat smaller than the ion

heat transport. The electromagnetic electron heat flux starts

from zero in the electrostatic limit and increases with a b2

dependence up to �b ¼ 0:8%, at which point, it is compara-

ble to the electrostatic heat transport. It has recently been dis-

covered that this modest electromagnetic heat transport is

accompanied by a high degree of magnetic stochasticity

throughout the b scan.20 This has been studied in depth for

the extended CBC parameters where the most unstable

modes are not resonant and therefore unable to reconnect

magnetic field lines. In this section, we show that subdomi-

nant modes with tearing parity are excited to significant am-

plitude in the nonlinear state and provide a mechanism for

the development of magnetic stochasticity. Much of the anal-

ysis in this section is applied to data first reported in Ref. 39.

The resonant component of a fluctuating magnetic vec-

tor potential, Ajj, is extracted by integrating along the field

line at a rational surface: Ares
jj ¼ hAjjðx ¼ xratðkyÞ; ky; zÞiz. At

kx ¼ 0, the linear gyrokinetic equation possesses symmetries

that enforce certain parities in the z and tjj coordinates: solu-

tions must have even parity, f ðz; tjjÞ ¼ f ð�z;�tjjÞ, or odd

parity, f ðz; tjjÞ ¼ �f ð�z;�tjjÞ. Even parity solutions corre-

spond to parallel mode structures for the electrostatic poten-

tial (/), which are even about the outboard midplane, and

parallel mode structures for Ajj, which are odd about the out-

board midplane. Odd parity solutions are characterized by

the opposite behavior—odd / structures and even Ajj struc-

tures. The unstable ITG mode belongs to the class of even

parity solutions. Thus, the ITG mode’s Ajj fluctuations have

no resonant component and cannot contribute to the mag-

netic stochasticity. At kx > 0, the symmetry of the gyroki-

netic equation is broken due to the radial curvature term and

magnetic shear effects in the gyroaveraging operator. It is

observed that unstable modes at kx > 0 still possess predomi-
nantly even parity, but there may also be a small residual res-

onant component.

The excitation of subdominant modes with tearing parity

is demonstrated by performing a POD on Ajj data from a

nonlinear simulation. This is done here for a simulation

using CBC parameters with the modification of a finite value

of b ¼ 0:3%.39 The POD analysis is identical to that

described in Sec. II except that the input data are limited to

the fields, / and Ajj (rather than the entire distribution func-

tion). For a selected wavevector, these are functions only of

the parallel coordinate, z. Certain higher kx wavevectors are

connected to the central wavevector through the parallel

boundary condition,22 extending the parallel mode structure

over several poloidal turns. All such connections are

included in this analysis. For kxqi ¼ 0; kyqi. 0:35 wavevec-

tors, the n ¼ 1 / mode has even parity, and the n ¼ 1 Ajj
mode has odd parity, as shown in Figs. 11(A) and 11(C). In

contrast, the n ¼ 2 / mode has odd parity and the n ¼ 2 Ajj
mode has even (tearing) parity, as shown in Figs. 11(B) and

11(D). There are also additional subdominant modes with

tearing parity and increasingly small scale structure in the

parallel coordinate. Beyond kyqi ¼ 0:35, the tearing parity

mode becomes the dominant structure and the nontearing

parity mode (even in Ajj) has smaller amplitude. This is

shown in Fig. 12 where the singular values of the first two

modes are plotted for both the electrostatic potential (top)

and the magnetic vector potential (bottom); at kyqi ¼ 0:35,

the two modes have comparable amplitudes, and at larger ky,

the n ¼ 1 mode is characterized by tearing parity. This high-

ky region is where magnetic island overlap causes the sto-

chasticity. For kx > 0 wavevectors, the n ¼ 1 POD mode

deviates from the exact parity exhibited in Fig. 11.

POD mode decompositions can be used to determine the

dominant contribution to magnetic stochasticity. The POD of

Ajj data are constructed for each independent set of wavevec-

tors (central kx plus high kx connections). The first two POD

modes are generally similar to those shown in Fig. 11 for

kx ¼ 0 wavevectors. For kx > 0 wavevectors, the first two

FIG. 10. (Color online) Plot of the net

energy contribution, ðQkðf ðnÞÞ þ Ckðf ðnÞÞÞÐ
jhðnÞðtÞj2dt, of all modes with net posi-

tive values (red asterisks) and the n ¼ 1

mode (blue triangles) in (A) and (C). The

slightly larger values of the red asterisks

indicate the presence of some subcritical

instability. In (B) and (D), the net energy

contribution is plotted for the sum of all

negative modes (red asterisks) and all

n > 1 modes (blue triangles).
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POD modes still typically exhibit predominantly even or odd

parity with slight deviations. An algorithm is used to select

from the first two POD modes those which have predomi-

nantly tearing parity and those which are predominantly odd

parity. The contribution of each of these groups to the struc-

ture of the magnetic field can then be considered: a routine is

used to follow the perturbed magnetic field42 and calculate

a magnetic diffusion coefficient,43 Dst ¼ lim l!1ðh½riðlÞ
�rið0Þ
2i=2lÞ. It is found that the predominantly tearing par-

ity modes (n ¼ 2) produces a magnetic diffusion coefficient

that is comparable in magnitude to that of the total Ajj field.

In contrast, the predominantly odd (typically unstable)

modes produce a diffusion coefficient that is an order of

magnitude smaller. This topic will be explored more exten-

sively in a future publication.

V. SUMMARY AND CONCLUSIONS

We have shown that certain novel and important fea-

tures of plasma microturbulence require an understanding of

not just the instabilities that drive the turbulence but also

subdominant stable modes that are driven to finite amplitude

in the nonlinear state. This is demonstrated by constructing

mode decompositions of the gyrocenter distribution function

FIG. 11. Plot of the parallel mode struc-

tures of the electrostatic potential for the

n ¼ 1 mode (A) and n ¼ 2 mode (B).

Plot of the magnetic vector potential of

the n ¼ 1 mode (C) and the n ¼ 2 mode

(D). For the magnetic vector potential,

the n ¼ 1 mode has odd parity and so is

not resonant, whereas the n ¼ 2 mode

has even parity and is resonant. This is

for kxqi ¼ 0:0; kyqi ¼ 0:2.

FIG. 12. (Color online) Plot of the singular values of the n ¼ 1 mode (red

asterisks) and the n ¼ 2 mode (blue triangles) for the electrostatic potential

(top) and the magnetic vector potential (bottom) as a function of ky at

kx ¼ 0:0. For the magnetic vector potential, the n ¼ 1 mode is the odd (non-

tearing) mode at kyqi < 0:35 and the even (tearing parity) mode for

kyqi > 0:35.
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from nonlinear gyrokinetic simulations of ITG driven

turbulence. Mode decompositions can be constructed by pro-

jecting the distribution function onto a basis of linear

eigenmodes or alternatively using proper orthogonal decom-

position. An orthogonalized linear eigenmode projection

demonstrates that the unstable eigenmode is the dominant

mode in the turbulence and subdominant modes are excited

to amplitudes that decrease with increasing damping rate and

increasing linear mode frequency. POD mode decomposi-

tions have the advantages of orthogonality (of both mode

structures and time amplitudes) and optimality (truncated

decompositions capture more of the dynamics for POD than

for any other possible decomposition). As such POD is found

to be the most useful decomposition for studying the two im-

portant effects discussed in this paper. The first important

effect is in saturation of ITG driven turbulence. A hierarchy

of very many (>100) subdominant modes is excited for each

wavevector kx; ky. When arranged in order of decreasing am-

plitude, these modes develop increasingly fine scale structure

in the parallel spatial coordinate z and parallel velocity tjj
and also exhibit increasingly rapid fluctuation time scales.

Due to the excitation of these subdominant modes, dissipa-

tion peaks at the same perpendicular scales as the energy

drive from unstable modes. This is very different from the

traditional hydrodynamic picture of energy drive and dissi-

pation occurring at distinct scales. The second important role

of subdominant modes discussed in this paper is in facilitat-

ing magnetic stochasticity in electromagnetic simulations of

ITG driven turbulence. The most unstable modes are not res-

onant; their parallel mode structures for Ajj are odd about the

outboard midplane. Subdominant modes with tearing parity

(even Ajj about the outboard midplane) are excited to signifi-

cant amplitude. Initial indications are that unstable modes

have a relatively small effect whereas subdominant modes

are the dominant mechanism in the development of magnetic

stochasticity.
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